84 research outputs found

    Topographic representation of an occluded object and the effects of spatiotemporal context in human early visual areas.

    Get PDF
    モノの背後を見る脳の仕組みを解明 -視対象の部分像から全体像を復元する第1次視覚野の活動をfMRIで観察-. 京都大学プレスリリース. 2013-10-23.Occlusion is a primary challenge facing the visual system in perceiving object shapes in intricate natural scenes. Although behavior, neurophysiological, and modeling studies have shown that occluded portions of objects may be completed at the early stage of visual processing, we have little knowledge on how and where in the human brain the completion is realized. Here, we provide functional magnetic resonance imaging (fMRI) evidence that the occluded portion of an object is indeed represented topographically in human V1 and V2. Specifically, we find the topographic cortical responses corresponding to the invisible object rotation in V1 and V2. Furthermore, by investigating neural responses for the occluded target rotation within precisely defined cortical subregions, we could dissociate the topographic neural representation of the occluded portion from other types of neural processing such as object edge processing. We further demonstrate that the early topographic representation in V1 can be modulated by prior knowledge of a whole appearance of an object obtained before partial occlusion. These findings suggest that primary "visual" area V1 has the ability to process not only visible or virtually (illusorily) perceived objects but also "invisible" portions of objects without concurrent visual sensation such as luminance enhancement to these portions. The results also suggest that low-level image features and higher preceding cognitive context are integrated into a unified topographic representation of occluded portion in early areas

    The relationship between attention and avoidance coping in anorexia nervosa: functional magnetic resonance imaging study

    Get PDF
    [Background] Numerous studies have demonstrated attentional control difficulties and high avoidance coping in patients with anorexia nervosa. Attention is a critical coping resource because it enables individuals to demonstrate self-control and complete goal-directed behaviours. [Aims] We aimed to examine whether attentional control difficulty is related to high avoidance coping, and investigate the neural underpinnings of attentional control difficulties in individuals with anorexia nervosa. [Method] Twenty-three patients with anorexia nervosa and 17 healthy controls completed questionnaires that assessed attention and coping, and underwent functional magnetic resonance imaging while performing a go/no-go task. [Results] Patients with anorexia nervosa showed weaker attentional control, higher omission error rates and higher avoidance coping compared with healthy controls. Attentional control difficulty was associated with higher avoidance coping in both groups. Functional magnetic resonance imaging analysis showed less deactivation in regions representing internal mental processing, such as the praecuneus, cuneus and left lingual gyrus, during the no-go condition. Moreover, weakened deactivation of the left lingual gyrus was associated with higher commission error rate in the anorexia nervosa group. [Conclusions] Our results suggest that patients with anorexia nervosa may have difficulty in maintaining attention to external ongoing events because of disturbance from internal self-related thought, and support the notion that attentional control difficulties underlie the frequent use of avoidance coping in anorexia nervosa

    Neural correlates of a mindfulness-based intervention in anorexia nervosa

    Get PDF
    神経性やせ症患者の不安に対するマインドフルネス瞑想の効果 --脳活動の変化を明らかに--. 京都大学プレスリリース. 2023-02-02.Accepting anxiety for peace of mind. 京都大学プレスリリース. 2023-02-08.We examined the neural underpinnings of the effects of mindfulness on anxiety in anorexia nervosa using functional magnetic resonance imaging in 21 anorexia patients. We used a functional magnetic resonance imaging task designed to induce weight-related anxiety and asked participants to regulate their anxiety either using or not using an acceptance strategy. Our results showed reduced activity in the amygdala, anterior cingulate cortex, putamen, caudate, orbital gyrus, middle frontal gyrus, posterior cingulate cortex and precuneus following a mindfulness-based intervention. The present study provides new insight regarding the neural mechanisms underlying the effect of mindfulness-based intervention in ameliorating anorexia nervosa

    Functional relevance of the precuneus in verbal politeness.

    Get PDF
    Non-competitive and non-threatening aspects of social hierarchy, such as politeness, are universal among human cultures, and might have evolved from ritualized submission in primates; however, these behaviors have rarely been studied. Honorific language is a type of polite linguistic communication that plays an important role in human social interactions ranging from everyday conversation to international diplomacy. Here, functional magnetic resonance imaging (fMRI) revealed selective precuneus activation during a verbal politeness judgment task, but not other linguistic-judgment or social-status recognition tasks. The magnitude of the activation was correlated with the task performance. Functional suppression of the activation using cathodal transcranial direct-current stimulation reduced performance in the politeness task. These results suggest that the precuneus is an essential hub of the verbal politeness judgment

    Phonological memory in sign language relies on the visuomotor neural system outside the left hemisphere language network

    Get PDF
    Sign language is an essential medium for everyday social interaction for deaf people and plays a critical role in verbal learning. In particular, language development in those people should heavily rely on the verbal short-term memory (STM) via sign language. Most previous studies compared neural activations during signed language processing in deaf signers and those during spoken language processing in hearing speakers. For sign language users, it thus remains unclear how visuospatial inputs are converted into the verbal STM operating in the left-hemisphere language network. Using functional magnetic resonance imaging, the present study investigated neural activation while bilinguals of spoken and signed language were engaged in a sequence memory span task. On each trial, participants viewed a nonsense syllable sequence presented either as written letters or as fingerspelling (4–7 syllables in length) and then held the syllable sequence for 12 s. Behavioral analysis revealed that participants relied on phonological memory while holding verbal information regardless of the type of input modality. At the neural level, this maintenance stage broadly activated the left-hemisphere language network, including the inferior frontal gyrus, supplementary motor area, superior temporal gyrus and inferior parietal lobule, for both letter and fingerspelling conditions. Interestingly, while most participants reported that they relied on phonological memory during maintenance, direct comparisons between letters and fingers revealed strikingly different patterns of neural activation during the same period. Namely, the effortful maintenance of fingerspelling inputs relative to letter inputs activated the left superior parietal lobule and dorsal premotor area, i.e., brain regions known to play a role in visuomotor analysis of hand/arm movements. These findings suggest that the dorsal visuomotor neural system subserves verbal learning via sign language by relaying gestural inputs to the classical left-hemisphere language network

    Atypical spatial frequency dependence of visual metacognition among schizophrenia patients

    Get PDF
    Although altered early stages of visual processing have been reported among schizophrenia patients, how such atypical visual processing may affect higher-level cognition remains largely unknown. Here we tested the hypothesis that metacognitive performance may be atypically modulated by spatial frequency (SF) of visual stimuli among individuals with schizophrenia, given their altered magnocellular function. To study the effect of SF on metacognitive performance, we asked patients and controls to perform a visual detection task on gratings with different SFs and report confidence, and analyzed the data using the signal detection theoretic measure meta-d′. Control subjects showed better metacognitive performance after yes- (stimulus presence) than after no- (stimulus absence) responses (‘yes-response advantage’) for high SF (HSF) stimuli but not for low SF (LSF) stimuli. The patients, to the contrary, showed a ‘yes-response advantage’ not only for HSF but also for LSF stimuli, indicating atypical SF dependency of metacognition. An fMRI experiment using the same task revealed that the dorsolateral prefrontal cortex (DLPFC), known to be crucial for metacognition, shows activity mirroring the behavioral results: decoding accuracy of perceptual confidence in DLPFC was significantly higher for HSF than for LSF stimuli in controls, whereas this decoding accuracy was independent of SF in patients. Additionally, the functional connectivity of DLPFC with parietal and visual areas was modulated by SF and response type (yes/no) in a different manner between controls and patients. While individuals without schizophrenia may flexibly adapt metacognitive computations across SF ranges, patients may employ a different mechanism that is independent of SF. Because visual stimuli of low SF have been linked to predictive top-down processing, this may reflect atypical functioning in these processes in schizophrenia

    Identifying and reverting the adverse effects of white matter hyperintensities on cortical surface analyses

    Get PDF
    ありふれた脳の白質病変がMRI画像解析を悪化させていた --従来手法に機械学習を組み入れた改善手法の開発--. 京都大学プレスリリース. 2023-10-02.The Human Connectome Project (HCP)-style surface-based brain MRI analysis is a powerful technique that allows precise mapping of the cerebral cortex. However, the strength of its surface-based analysis has not yet been tested in the older population that often presents with white matter hyperintensities (WMHs) on T2-weighted (T2w) MRI (hypointensities on T1w MRI). We investigated T1-weighted (T1w) and T2w structural MRI in 43 healthy middle-aged to old participants. Juxtacortical WMHs were often misclassified by the default HCP pipeline as parts of the gray matter in T1w MRI, leading to incorrect estimation of the cortical surfaces and cortical metrics. To revert the adverse effects of juxtacortical WMHs, we incorporated the Brain Intensity AbNormality Classification Algorithm into the HCP pipeline (proposed pipeline). Blinded radiologists performed stereological quality control (QC) and found a decrease in the estimation errors in the proposed pipeline. The superior performance of the proposed pipeline was confirmed using an originally-developed automated surface QC based on a large database. Here we showed the detrimental effects of juxtacortical WMHs for estimating cortical surfaces and related metrics and proposed a possible solution for this problem. The present knowledge and methodology should help researchers identify adequate cortical surface biomarkers for aging and age-related neuropsychiatric disorders

    Association Between Nerve Conduction Velocity and Clinical Parameters Related to Diabetic Complications inPatients with Type 2 Diabetes

    Get PDF
    The main purpose of the study was to investigate the association of median motor nerve conduction velocity(MCV) and sural sensory nerve conduction velocity( SCV) with parameters related to diabetic complicationsin patients with type 2 diabetes. A total of 263 patients hospitalized for glycemic control from 1999to 2006 who underwent single or multiple nerve conduction velocity tests (at least a right median MCVtest) were enrolled in the study retrospectively. Right median MCV showed a significant negative correlationwith age and diabetic duration, and was also significantly negatively correlated with systolic blood pressure(SBP) and log urinary albumin excretion (UAE). Right median MCV showed strong positive correlationswith left median MCV and right median SCV, and significant but relatively mild positive correlationswith right peroneal MCV and right sural SCV. In multiple regression analysis, only SBP and diabetic durationshowed a significant association with right median MCV. Although right sural SCV showed significantnegative correlations with SBP and log UAE, the correlations were relatively weak compared with those forright median MCV. Of 215 patients who underwent complete sural SCV measurements, right and left suralSCV were detected in 159( 74%) and 163 patients( 76%), respectively. In conclusion, these results suggestthat median MCV is more closely associated with markers related to diabetic complications such as SBP orUAE, compared with sural SCV, but that sural SCV is more sensitive than median MCV for detection of diabeticneuropathy

    SIADH induced by pneumonia in a patient with Shy-Drager syndrome

    Get PDF
    Patients with Shy-Drager syndrome have impaired baroreceptor-mediated vasopressin release when inan upright position. We report a case of Shy-Drager syndrome in which the syndrome of inappropriate secretionof antidiuretic hormone (SIADH) developed with pneumonia. It has been speculated that pneumonia-induced SIADH is caused by baroreceptor-mediated vasopressin release. Our case presents the possibilitythat pneumonia-induced SIADH is caused by non-baroreceptor-mediated ADH release
    corecore